当前位置:首页> 新闻中心

蒸汽量不足  在该系统中,蒸汽计量装置采用涡街流量计,由于安装条件所限,无法满足蒸汽的计量装置安装要求,对于进入换热器的蒸汽量无法得到准确的数据

* 来源: * 作者: * 发表时间: 2021-07-30 1:14:11 * 浏览: 0

山东换热站厂家直销(4)温控器失灵,触点断开(5)压缩机启动电容器容量变值(减小)或被击穿。(6)压缩机电路接线错误或线路接点接触不良。5.空调器室、内外机组工作,但室内、外风扇不工作。(1)风扇电机工作电流过大,造成保险丝熔断。查明室内风扇电机工作电流过大的原因,修复后更换保险丝。(2)风扇被异物卡住或电机磨损严重,造成机械部件卡死,引起风扇电机烧坏。(3)风扇电容器变值或损坏。(4)继电器触点烧蚀、接触不良或接线端子不良。6.空调器开停频繁。(1)温控器失灵,引起机组开停频繁。

山东智能高效换热机组生产  (二)换热器内存在结垢现象  换热器结垢,将会对换热器的换热效果产生很大的影响,造成换热系数降低,换热效率大大降低,出口水温低为避免换热器结垢,选择了双纹管式换热器,该换热器换热管的特殊结构,使水在管内流动呈紊流状态,流速较高,不易结垢。在系统停运时,我们将加热器进行了解体检查,内部基本没有结垢现象。  (三)蒸汽量不足  在该系统中,蒸汽计量装置采用涡街流量计,由于安装条件所限,无法满足蒸汽的计量装置安装要求,对于进入换热器的蒸汽量无法得到准确的数据。  (四)水路堵塞  换热器水路堵塞会使流经换热器循环水量减少,造成换热器水路出水与进水温差大、压差大,疏水温度高。但在实际运行中,换热器进出口压差△P=0.02MPa左右,厂家提供管程阻力为△P=0.04Mpa,从运行状况分析来看,水路堵塞的可能性不大。在对加热器的解体检查中对各管路进行检查,没有发现堵塞现象。。

山东缠绕式换热器哪家好因此目前主流压缩机供应商均聚焦直流变频技术以便匹配数据中心负载变化节能要求的大趋势    从表4的对比分析可以看出数码涡旋式压缩机和变频压缩机的冲击电流有较大区别采用UPS为直膨式风冷精密空调配电时需考虑压缩机冲击电流的影响。以制冷量35kW的风冷行级精密空调为例A厂家采用数码涡旋压缩机B厂家采用直流变频压缩机其整机启动电流的对比如图5所示。    根据A、B两个厂家提供的技术参数并结合测试结果采用数码涡旋压缩机的DX型精密空调其启动冲击电流约为额定电流的5倍,而采用直流变频压缩机的DX型精密空调其启动电流小于额定电流。    风冷直膨式精密空调的室外机由风机转速控制器(含压缩机变频器)、电控盒、冷凝器、机架和风机等组成其启动电流小于满载电流。当采用UPS给风冷冷凝器供电时考虑其额定满载电流即可。    例如假设在T1工况(温带气候环境温度在-20~45℃)对于散热量为38kW风冷室外机其输入制式为380~415Vac/3Ph/50或60Hz满载电流为2.5A功率因数取0.8则室外机功率为    对水冷直膨式而言若采用数码涡旋压缩机的室内精密空调需考虑5倍冲击电流的影响,而对采用变频压缩技术的精密空调由于变频压缩机的启动电流小于其额定电流因此UPS需考虑其额定电功率并根据GB/T50174-2008的冗余设计原则考虑1.2倍的冗余系数即可。    对水冷直膨式的冷却系统由于配置了冷却水泵和冷却塔冷却水泵有定频水泵和变频水泵方案对冷却塔内又有对应的风机需根据具体的水泵方案和冷却塔内的风机类型进行考虑。    (2)UPS带冷冻水型精密空调配置分析    根据Uptime对冷冻水型空调系统作出的关于连续制冷级别的定义考虑UPS给精密空调配电时其主要应用在不间断制冷(ClassA级别)和连续制冷(ClassB级别)两种场景两者的区别在于是否设置制冷罐冷冻水二次泵是否采用UPS供电。若整体空调系统设置蓄冷罐进行蓄冷同时冷冻水二次泵、末端空调采用UPS供电则为ClassA级别的不间断制冷方案,若仅对冷冻水二次泵、末端空调采用UPS供电并无配置蓄冷罐则为ClassB级别的制冷方案。在实际应用中冷冻水型蓄冷系统的整体方案架构如图6所示。

山东高效换热机组设计  热力膨胀阀:热力膨胀阀在风冷式冷水机制冷系统中既是流量的调节阀,又是制冷设备中的节流阀,它在制冷设备中安装在干燥过滤器和蒸发器之间,它的感温包是包扎在蒸发器的出口处其主要作用是使高压常温的制冷剂液体在流经热力膨胀阀时节流降压,变为低温低压制冷剂湿蒸气(大部分是液体,小部分是蒸汽)进入蒸发器,在蒸发器内汽化吸热,而达到制冷降温的目的。  制冷剂:在现代工业中使用的大多数工业冷水机均使用R22或R12作为制冷剂。制冷剂是制冷系统里的流动工质,它的主要作用是携带热量,并在状态变化时实现吸热和放热。。

压力测试检查中发现换热器的换热管结垢,并且垢层坚硬,结垢层厚度高达10mm以上,由此推断换热管结垢层是导致余热回收装置回收热效率下降的根本原因业内一直想寻求一种消除顽固结垢层的方法,恢复其原有的热效率功能。因热风炉余热回收装置无清垢的先例,通过相关资料查寻,试探性的尝试一种清垢方法,竟得到意想不到的清垢效果,如干冰清垢法对煤气换热器的清垢及为有效。宝钢热风炉余热回收装置由3套换热器组成,烟气、空气和煤气换热器,烟气换热器将热风炉燃烧后排放的废气温度(约300℃)转换成媒介热能,空气、煤气换热器则将媒介热能转换成助燃空气、煤气的热能后供热风炉燃烧。每套换热器由8组换热片组成,每组换热片则由110根缠绕着换热翅片的换热支管连接构成。目前该换热器换热效果每况愈下,尤其是煤气换热器,经揭盖检查发现换热器表层结垢现象严重。煤气换热器支管换热翅片形貌已被垢层覆盖,结垢层厚度高达10mm,最厚垢层达30mm,且垢层坚硬。煤气中的杂质随煤气流进入煤气换热器,加之煤气流在换热器中的流速缓慢(为达到理想的热交换效率的必备条件),此时类似重力除尘的作用,气流中的尘埃易降落于换热器的换热翅片之间(换热器翅片距离6mm),再加上煤气中的水分作用,长年使用后导致换热器结垢堵塞,并且垢层坚硬。针对上述换热器结垢状况寻求处理方法,结垢清除的方法较多,通常的清除方法有高压水冲洗法、高压气体吹扫法、化学剂清洗法、机械零件或医学上的超声波清洗法以及手工